RVM Classification of Hyperspectral Images Based on Wavelet Kernel Non-negative Matrix Fractorization

نویسندگان

  • Lin Bai
  • Defa Hu
  • Meng Hui
  • Yanbo Li
چکیده

A novel kernel framework for hyperspectral image classification based on relevance vector machine (RVM) is presented in this paper. The new feature extraction algorithm based on Mexican hat wavelet kernel non-negative matrix factorization (WKNMF) for hyperspectral remote sensing images is proposed. By using the feature of multi-resolution analysis, the new method of nonlinear mapping capability based on kernel NMF can be improved. The new classification framework of hyperspectral image data combined with the novel WKNMF and RVM. The simulation experimental results on HYDICE and AVIRIS data sets are both show that the classification accuracy of proposed method compared with other experiment methods even can be improved over 10% in some cases and the classification precision of small sample data area can be improved effectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SVM classification of hyperspectral images based on wavelet kernel non-negative matrix factorization

This paper presents a new kernel framework for hyperspectral images classification. In this paper, a new feature extraction algorithm based on wavelet kernel non-negative matrix factorization (WKNMF) for hyperspectral remote sensing images is proposed. By using the feature of multi-resolution analysis, the new method can improve the nonlinear mapping capability of kernel non-negative matrix fac...

متن کامل

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

متن کامل

Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images

Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...

متن کامل

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

Transductive Kernel Matrix Learningwith Hierarchic Bayesian Model, Application to Hyperspectral Images

In recent years, kernel methods have demonstrated their performance in hyperspectral imaging. Among the reasons their ability to handle large input spaces is essential. However for this type of applications a critical problem is the choice of the kernel which must combine spectral and spatial information [1] and of course achieve good generalization performance. The kernel design stage is gener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015